Ignite connector#
The Ignite connector allows querying an Apache Ignite database from Trino.
Requirements#
To connect to a Ignite server, you need:
Ignite version 2.8.0 or latter
Network access from the Trino coordinator and workers to the Ignite server. Port 10800 is the default port.
Specify
--add-opens=java.base/java.nio=ALL-UNNAMED
in thejvm.config
when starting the Trino server.
Configuration#
The Ignite connector expose public
schema by default.
The connector can query a Ignite instance. Create a catalog properties file
that specifies the Ignite connector by setting the connector.name
to
ignite
.
For example, to access an instance as example
, create the file
etc/catalog/example.properties
. Replace the connection properties as
appropriate for your setup:
connector.name=ignite
connection-url=jdbc:ignite:thin://host1:10800/
connection-user=exampleuser
connection-password=examplepassword
The connection-url
defines the connection information and parameters to pass
to the Ignite JDBC driver. The parameters for the URL are available in the
Ignite JDBC driver documentation.
Some parameters can have adverse effects on the connector behavior or not work
with the connector.
The connection-user
and connection-password
are typically required and
determine the user credentials for the connection, often a service user. You can
use secrets to avoid actual values in the catalog
properties files.
Multiple Ignite servers#
If you have multiple Ignite servers you need to configure one catalog for each server. To add another catalog:
Add another properties file to
etc/catalog
Save it with a different name that ends in
.properties
For example, if you name the property file sales.properties
, Trino uses the
configured connector to create a catalog named sales
.
General configuration properties#
The following table describes general catalog configuration properties for the connector:
Property name |
Description |
Default value |
---|---|---|
|
Support case insensitive schema and table names. |
|
|
This value should be a duration. |
|
|
Path to a name mapping configuration file in JSON format that allows Trino to disambiguate between schemas and tables with similar names in different cases. |
|
|
Frequency with which Trino checks the name matching configuration file for changes. This value should be a duration. |
(refresh disabled) |
|
The duration for which metadata, including table and column statistics, is cached. |
|
|
Cache the fact that metadata, including table and column statistics, is not available |
|
|
Maximum number of objects stored in the metadata cache |
|
|
Maximum number of statements in a batched execution. Do not change this setting from the default. Non-default values may negatively impact performance. |
|
|
Push down dynamic filters into JDBC queries |
|
|
Maximum duration for which Trino will wait for dynamic filters to be collected from the build side of joins before starting a JDBC query. Using a large timeout can potentially result in more detailed dynamic filters. However, it can also increase latency for some queries. |
|
Domain compaction threshold#
Pushing down a large list of predicates to the data source can compromise
performance. Trino compacts large predicates into a simpler range predicate
by default to ensure a balance between performance and predicate pushdown.
If necessary, the threshold for this compaction can be increased to improve
performance when the data source is capable of taking advantage of large
predicates. Increasing this threshold may improve pushdown of large
dynamic filters.
The domain-compaction-threshold
catalog configuration property or the
domain_compaction_threshold
catalog session property can be used to adjust the default value of
1000
for this threshold.
Procedures#
system.flush_metadata_cache()
Flush JDBC metadata caches. For example, the following system call flushes the metadata caches for all schemas in the
example
catalogUSE example.example_schema; CALL system.flush_metadata_cache();
Case insensitive matching#
When case-insensitive-name-matching
is set to true
, Trino
is able to query non-lowercase schemas and tables by maintaining a mapping of
the lowercase name to the actual name in the remote system. However, if two
schemas and/or tables have names that differ only in case (such as “customers”
and “Customers”) then Trino fails to query them due to ambiguity.
In these cases, use the case-insensitive-name-matching.config-file
catalog
configuration property to specify a configuration file that maps these remote
schemas/tables to their respective Trino schemas/tables:
{
"schemas": [
{
"remoteSchema": "CaseSensitiveName",
"mapping": "case_insensitive_1"
},
{
"remoteSchema": "cASEsENSITIVEnAME",
"mapping": "case_insensitive_2"
}],
"tables": [
{
"remoteSchema": "CaseSensitiveName",
"remoteTable": "tablex",
"mapping": "table_1"
},
{
"remoteSchema": "CaseSensitiveName",
"remoteTable": "TABLEX",
"mapping": "table_2"
}]
}
Queries against one of the tables or schemes defined in the mapping
attributes are run against the corresponding remote entity. For example, a query
against tables in the case_insensitive_1
schema is forwarded to the
CaseSensitiveName schema and a query against case_insensitive_2
is forwarded
to the cASEsENSITIVEnAME
schema.
At the table mapping level, a query on case_insensitive_1.table_1
as
configured above is forwarded to CaseSensitiveName.tablex
, and a query on
case_insensitive_1.table_2
is forwarded to CaseSensitiveName.TABLEX
.
By default, when a change is made to the mapping configuration file, Trino must
be restarted to load the changes. Optionally, you can set the
case-insensitive-name-mapping.refresh-period
to have Trino refresh the
properties without requiring a restart:
case-insensitive-name-mapping.refresh-period=30s
Non-transactional INSERT#
The connector supports adding rows using INSERT statements.
By default, data insertion is performed by writing data to a temporary table.
You can skip this step to improve performance and write directly to the target
table. Set the insert.non-transactional-insert.enabled
catalog property
or the corresponding non_transactional_insert
catalog session property to
true
.
Note that with this property enabled, data can be corrupted in rare cases where exceptions occur during the insert operation. With transactions disabled, no rollback can be performed.
Table properties#
Table property usage example:
CREATE TABLE public.person (
id bigint NOT NULL,
birthday DATE NOT NULL,
name VARCHAR(26),
age BIGINT,
logdate DATE
)
WITH (
primary_key = ARRAY['id', 'birthday']
);
The following are supported Ignite table properties from https://ignite.apache.org/docs/latest/sql-reference/ddl
Property name |
Required |
Description |
---|---|---|
|
No |
|
primary_key
#
This is a list of columns to be used as the table’s primary key. If not specified, a VARCHAR
primary key column named DUMMY_ID
is generated,
the value is derived from the value generated by the UUID
function in Ignite.
Type mapping#
The following are supported Ignite SQL data types from https://ignite.apache.org/docs/latest/sql-reference/data-types
Ignite SQL data type name |
Map to Trino type |
Possible values |
---|---|---|
|
|
|
|
|
|
|
|
Data type with fixed precision and scale |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Represents a byte array. |
SQL support#
The connector provides read access and write access to data and metadata in Ignite. In addition to the globally available and read operation statements, the connector supports the following features:
ALTER TABLE#
The connector does not support renaming tables across multiple schemas. For example, the following statement is supported:
ALTER TABLE example.schema_one.table_one RENAME TO example.schema_one.table_two
The following statement attempts to rename a table across schemas, and therefore is not supported:
ALTER TABLE example.schema_one.table_one RENAME TO example.schema_two.table_two
Pushdown#
The connector supports pushdown for a number of operations:
Aggregate pushdown for the following functions:
Predicate pushdown support#
The connector does not support pushdown of any predicates on columns with
textual types like CHAR
or VARCHAR
.
This ensures correctness of results since the data source may compare strings
case-insensitively.
In the following example, the predicate is not pushed down for either query
since name
is a column of type VARCHAR
:
SELECT * FROM nation WHERE name > 'CANADA';
SELECT * FROM nation WHERE name = 'CANADA';